13
Wide Bandgap Semiconductors
for Bioelectronics
Giovana A. Parolin, Alessandra S. Menandro, Rebeca R. Rodrigues, and Laura O. Péres
Laboratory of Hybrid Materials, Institute of Environmental, Chemical, and Pharmaceutical Sciences,
Federal University of São Paulo, São Paulo, Brazil
CONTENTS
13.1 Introduction......................................................................................................................203
13.2 Classes of Wide Bandgap Semiconductors.................................................................204
13.2.1 II−VI Materials...................................................................................................204
13.2.2 III−Nitride...........................................................................................................206
13.2.3 Silicon Carbide – SiC ........................................................................................206
13.3 Fundamental Concepts and Properties of Wide Bandgap Semiconductors.........208
13.3.1 Piezoelectric Effect, Piezoelectric Polarization, and Piezoresistive
Effect ....................................................................................................................208
13.3.2 Direct Bandgap and High Optical Transmittance.......................................209
13.3.3 High Electron Mobility.....................................................................................210
13.3.4 Biocompatibility and Biodegradability..........................................................210
13.4 Which Techniques Have Been Used to Fabricate These Devices?.........................211
13.4.1 Direct Growth of Nanostructures on Flexible Substrates ..........................211
13.4.2 Fabrication Methods of Nanostructures Followed by Transferring
Processes .............................................................................................................213
13.4.2.1 Bottom-Up Growth...........................................................................213
13.4.2.2 Top-Down Growth...........................................................................214
13.4.2.3 Transferring Processes .....................................................................215
13.5 Applications – Where They Can Be Used in Bioelectronics?..................................215
References ....................................................................................................................................217
13.1 Introduction
Wide bandgap (WBG) semiconductors are defined as materials owing a bandgap sub
stantially in excess, which is greater than 2.2 eV, emerging as efficient materials for ap
plications in high-performance optoelectronic and electronic devices. The interest of
researchers in WBG compounds has been growing since the late 1980s, resulting in the
inclusion of materials with hexagonal and orthorhombic structures in the range of
semiconductors. WBG semiconductors could be classified mainly into three families’
compounds, the II−VI materials, III−nitride, and SiC, including all their alloys. Among
DOI: 10.1201/9781003263265-13
203